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Abstract—Air traffic controllers (ATCOs) are responsible for 

issuing high-intensity voice commands in the Terminal 

Maneuvering Area (TMA), where precise workload modeling is vital 

for flight safety and airspace efficiency. This paper proposes a 

multimodal deep learning framework that fuses structured data, 

historical trajectory sequences, and image information to estimate 

two key parameters in the ATCO command lifecycle: the time offset 

between voice command and actual aircraft maneuver, and the 

duration of voice command. Based on TMA operations, a high-

quality dataset was constructed, with maneuver points identified 

using sliding window and histogram-based methods. Building on 

this, a CNN-Transformer ensemble model was developed to deliver 

accurate and generalizable predictions, with built-in interpretability. 

By linking trajectory data to voice command, this study presents the 

first model of its kind to support intelligent command generation, 

providing theoretical and practical value for ATCO workload 

assessment, human resource planning, and scheduling optimization.  

Keywords—Air Traffic Management, Workload Assessment, 

Command Lifecycle, CNN-Transformer, Multimodal Deep Learning  

I. INTRODUCTION 

A. Background 

With the continuous growth of global air transportation 
demand, the complexity of airspace operations and the density 
of flight traffic have increased substantially. This trend presents 
significant challenges for air traffic control (ATC) systems. As 
a vital function responsible for maintaining flight safety and 
optimizing airspace efficiency, ATC operations are increasingly 
under pressure to manage large volumes of traffic while also 
addressing unpredictable events such as adverse weather and 
potential traffic conflicts. The effectiveness of ATC systems 
directly influences daily life, affecting everything from the 
timely delivery of airfreight in logistics to the punctuality and 
safety of personal and business travel. 

Although technologies for surveillance and communication 
have advanced considerably, the overall effectiveness of ATC 
systems still depends largely on human operators, specifically 
air traffic controllers (ATCOs). ATCOs are the key decision-
makers responsible for monitoring en-route aircraft, assessing 
airspace conditions, tracking aircraft trajectories and flight plans, 

and issuing precise maneuver commands to ensure safe and 
orderly flight operations. As air traffic continues to grow, 
controllers face increasing volumes of information, greater 
cognitive demands, and more intensive workloads. From a 
human-centered perspective, this "human bottleneck" has 
become a major constraint on improving both the efficiency and 
safety of ATC systems. Accurately quantifying task intensity 
and evaluating controller workload has therefore become an 
essential research direction to support fatigue detection, 
personnel scheduling, and the development of intelligent ATC 
solutions. 

B. Related Work 

Early studies on ATCO workload modeling primarily relied 
on statistical and rule-based approaches, aiming to establish 
correlations between objective traffic metrics and subjective 
workload. Among these efforts, subjective evaluation methods 
such as NASA Task Load Index (NASA-TLX) [10], along with 
other task-specific assessment techniques, were commonly 
employed. The concept of Dynamic Density proposed by 
Laudeman et al. (1998) [1] marked a seminal advancement, 
using linear regression to estimate controller workload as a 
weighted combination of aircraft count, proximity, and other 
complexity factors. Sridhar et al. (1998) [2] further extended this 
model for short-term prediction. Other studies, such as 
Tobaruela et al. (2014) [3], considered the number and types of 
issued commands as alternative workload indicators. While 
these models are intuitive and interpretable, they are limited in 
flexibility and often constrained by small sets of handcrafted 
features, which restrict their applicability in complex and 
dynamic airspace environments. 

With the growth of available data and computing power, 
machine learning techniques have been introduced to overcome 
the limitations of traditional models. These methods are capable 
of utilizing a broader range of features and capturing nonlinear 
relationships. A common approach is to treat workload as a 
classification task (e.g., low, medium, high) and train supervised 
models accordingly. For example, Gianazza et al. (2017) [4] 
used historical radar data to compute air traffic complexity 
indicators and inferred workload levels from sector merging and 
splitting events, comparing models such as LDA, QDA, Naive 



Bayes, neural networks, and Gradient Boosted Trees. In a study 
on Spanish ATC sectors, Random Forest and XGBoost models 
were trained on operational data to predict controller actions, 
which were then used as indirect indicators of workload [5]. 
While these machine learning methods provided improved 
adaptability, most remained dependent on engineered features 
and did not fully exploit the spatial–temporal structure of air 
traffic operations. 

More recently, deep learning has emerged as a promising 
direction for workload modeling, due to its ability to 
automatically learn feature representations from high-
dimensional and multimodal inputs. Convolutional Neural 
Networks (CNNs), known for capturing spatial structures, have 
been employed to model airspace traffic complexity using grid-
based representations. For instance, Xie et al. (2021) [6] 
transformed real-time air traffic data into multichannel scene 
images and used a CNN to predict sector complexity without 
handcrafted features. Graph-based approaches have also been 
explored; Pang et al. (2023) [9] modeled aircraft interactions as 
dynamic graphs and used Graph Convolutional Networks 
(GCNs) to learn complexity patterns and infer workload from 
evolving topologies. 

Given the temporal characteristics of ATC operations, 
recurrent neural networks (RNNs), particularly LSTM and GRU 
models, have been applied to capture workload dynamics over 
time. Shyr et al. (2024) [7] employed LSTM networks to 
forecast workload trends using time-series indicators, enabling 
early detection of high workload scenarios. Transformer-based 
models have also gained traction due to their attention 
mechanisms and strong sequence modeling capabilities. Yang et 
al. (2023) [8] proposed a cognitive load estimation model using 
stacked CNN and Transformer encoders to extract spatial and 
temporal features from Mel-spectrograms of controller-pilot 
communication, achieving 97.48% accuracy and outperforming 
several classical baselines. In parallel, multimodal data fusion 

has become an increasingly important direction, with several 
studies integrating radar trajectories, voice communication, and 
controller action data into unified learning frameworks. These 
efforts suggest that combining CNN and Transformer 
architectures in a multimodal setting can yield more accurate 
and generalizable workload models, laying the foundation for 
interpretable and real-time intelligent air traffic management 
systems. 

Despite growing interest in modeling ATCO workload, most 
machine learning-based approaches have overlooked critical 
contextual factors such as weather conditions, airspace structure, 
and inter-aircraft interactions. This omission limits their 
capacity to capture the operational complexity of real-world 
scenarios and undermines model generalizability. Traditional 
workload assessments, often grounded in static surveys or 
psychological models, similarly fall short in representing the 
dynamic, process-oriented nature of ATCO tasks. In practice, 
the issuance of control commands follows a structured temporal 
sequence—from situational perception and command delivery 
to aircraft execution and potential follow-up—collectively 
referred to here as the ATCO command lifecycle. This lifecycle 
offers a behaviorally grounded framework for understanding 
workload as it evolves over time, yet it remains largely 
unaddressed in existing modeling efforts. 

To bridge this gap, this study proposes a data-driven 
framework that explicitly models two key temporal variables 
within the command lifecycle: Time Offset, defined as the delay 
between command issuance and aircraft response, and Duration, 
the length of the spoken command. These variables are essential 
for reconstructing the controller’s operational timeline and 
assessing workload intensity in real time. By incorporating these 
dynamic elements, the proposed approach facilitates closed-
loop modeling of ATCO behavior, providing a more accurate 
and interpretable basis for workload prediction.

 

Fig. 1. Comparison of actual and estimated ATCO command lifecycles.  



C. Problem Defination 

This study aims to construct a predictive framework for 
modeling the ATCO command lifecycle in terminal airspace, 
focusing on estimating controller workload via temporal 
behavior analysis. The “command lifecycle” refers to the 
complete temporal process from the issuance of a spoken 
command by an ATCO to the execution of the corresponding 
maneuver by the aircraft. 

As shown in Fig. 1, green bars indicate actual maneuver 
periods, blue bars denote the durations of spoken commands 
with annotated time offsets, and orange bars represent the 
predicted command lifecycles. The lifecycle is characterized by 
two key temporal parameters—Time Offset and Duration—
which serve as the primary prediction targets in this study. 

1) Time Offset: Time Offset is the temporal difference 

between an ATCO command and the actual initiation of the 

aircraft maneuver. It reflects pilot responsiveness and inherent 

command latency. As shown in Fig. 1, many maneuvers (e.g., 

holding, speed changes) have noticeable delays (Time Offset2, 

Offset3), while others, like pre-planned altitude changes, may 

begin with minimal delay or even before command completion. 

These variations arise from factors such as scheduling or pilot 

habits. Accurate Time Offset prediction is essential for 

reconstructing controller timelines and assessing real-time 

demand. This study addresses it via a deep learning model to 

identify command completion points on the audio timeline. 

2) Duration: Duration refers to how long an ATCO 

command remains audible, indirectly reflecting its complexity 

and information content. As shown in Fig. 1 (Duration1–3), 

longer utterances often imply multi-task commands involving 

speed, altitude, or heading changes. In the framework, the 

predicted command end time (from the Time Offset model) 

minus Duration yields the precise issuance time, enabling 

reverse mapping from behavior to voice. 

 By jointly modeling Time Offset and Duration, the proposed 
approach captures key temporal features of the ATCO command 
lifecycle. This dual-parameter prediction forms a robust basis 
for quantifying both the intensity and temporal distribution of 
controller workload, supporting a comprehensive task intensity 
assessment system.  

D. Significance and Contributions 

 This study primarily addresses the prediction of ATCO 
spoken commands and represents, to the best of current 
knowledge, the first attempt to infer controller command 
timelines directly from aircraft trajectories and airspace context. 
The core contribution is the formal introduction of the ATCO 
command lifecycle concept, along with the accurate prediction 
of its two key temporal variables: the Time Offset between the 
issuance of spoken commands and the actual execution of 
aircraft maneuvers, and the Duration of each spoken command. 
This approach enables the reconstruction of the real operational 
timeline for controllers, providing a structured, data-driven 
representation of ATCO work patterns. 

 In this study, a new paradigm for air traffic control task 
modeling is proposed, enabling the estimation of controller 

 

Fig. 2 (a). Command overlap in peak hour. 

 

Fig. 2 (b). Aggregated command duration as workload metric. 

workload and task intensity in terminal maneuvering areas. By 
modeling when commands are issued and how long each 
command persists, the framework reconstructs the actual 
workload process and enables the simulation of controller 
behavior under varying traffic scenarios.  

 As illustrated in Fig. 2 (a), the distribution and overlap of 
command durations during peak hours can be visualized for 
different aircraft. Such overlap periods indicate intervals of high 
concurrent demand, which are critical for estimating ATCO 
staffing needs and for designing rational task allocation 
strategies. Moreover, as shown in Fig. 2 (b), the cumulative 
duration of spoken commands over a given period serves as a 
direct, interpretable metric for quantifying ATCO workload. 
This enables the identification of periods with elevated 
workload or potential fatigue risk, thereby supporting fatigue 
detection and proactive workload balancing. Metrics such as the 
number of commands issued per unit time and the average 
interval between commands further contribute to a 
comprehensive assessment of cognitive demand. 

The key contributions of this study are as follows: 

1) Command Lifecycle Modeling: This study formally 

defines the ATCO command lifecycle and introduces a novel 

framework for jointly predicting Time Offset and Duration, 

expanding the scope of ATC behavior modeling. 

2) Multimodal Deep Learning: A CNN-Transformer-based 

framework is developed to fuse structured data, trajectories, and 

airspace images, enabling comprehensive multimodal learning.  

3) Interpretability and Application: The framework 

incorporates attention-based interpretability, supports real-

world deployment, and offers actionable insights for ATCO 

workload management and decision-making. The code is 

publicly available. 



II. METHODOLOGY 

A. Dateset 

 To support ATCO command lifecycle modeling, a multi-
source dataset was built by integrating flight trajectories, 
transcribed voice commands, and contextual information from 
open-access platforms. All data were aligned by callsigns and 
timestamps to ensure semantic and temporal consistency. 

1) Trajectory Event Detection 
The trajectory data were collected from a global open ADS-

B archive, filtered by geographical bounds and date ranges. Each 
aircraft’s 4D trajectory was represented as a time-series 
sequence of latitude, longitude, altitude, ground speed, and 
heading. Fig. 3 illustrates the two-dimensional ground 
trajectories of arriving aircraft within a single day at a selected 
terminal area. To associate ATC commands with actual aircraft 
responses, it was necessary to identify the true initiation times 
of flight maneuvers from the trajectory data. Based on 
behavioral patterns, each trajectory was segmented into two 
phases: stable platforms and change periods. During stable 
platforms, the aircraft maintained consistent flight parameters 
and was presumed not to be responding to new commands; 
during change periods, it actively adjusted its state in response 
to a command, such as altering altitude, speed, or heading. These 
change points served as candidate maneuver initiation times and 
were crucial for command alignment. 

To extract these maneuver events, a sliding window with 
histogram-based platform detection method was applied across 
altitude, speed, and heading data. To characterize vertical 
motion patterns, the rate of climb/descent (ROCD) was 
computed using a smoothed 30-second window:  

𝑅𝑂𝐶𝐷𝑡 =
𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑡+30−𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑡

30
× 60                (1) 

Continuous descent operations (CDOs) were excluded due 
to minimal controller input during these phases. Speed data were 
converted from ground speed to calibrated airspeed (CAS) using 
meteorological models. Heading maneuvers were detected via 
angular normalization, accounting for 360-degree wrap-around. 

For each flight parameter, a multi-stage filtering pipeline 
combined noise suppression (e.g., Savitzky-Golay filtering), 
adaptive smoothing, and histogram density estimation within a 
sliding window to identify platform segments. A maneuver 
onset was defined as the end of a platform where a significant 
transition to a new state began. 

Holding patterns were detected using two complementary 
strategies: a structural method based on “turn–platform–turn” 
motifs, and a behavioral method relying on limited displacement 
and low heading variability. Fig. 4 shows heading variation over 
time for a representative flight, with red dots marking change 
points and yellow segments indicating detected holdings. Fig. 5 
displays the corresponding spatial trajectory, where the elliptical 
region highlights the sustained holding maneuver. These 
methods enabled robust identification of looping patterns. 
Crucially, separating holdings from isolated heading changes 
reduced false positives and helped the model better associate 
commands with maneuvers, improving prediction accuracy. 

 

Fig. 3. Trajectories of arriving aircraft within one day at an airport

.  

Fig. 4. Heading changes and holding pattern detection for a flight. The red dots indicate heading change points; yellow segments indicate holding periods. 



 

Fig. 5. Trajectory of a flight. Elliptical region indicates the holding pattern. 

2) Voice Command Processing 
ATCO voice commands were sourced from a publicly 

available, manually transcribed dataset containing speaker 
labels, onset times, and durations. To structure the raw text, 
natural language processing techniques were applied to extract 
callsigns, command types, and parameters. Callsigns were 
identified using regular expressions and normalized via a lookup 
table mapping airline aliases to ICAO codes. For example, 
“speedbird one two three turn left heading zero” was parsed and 
mapped to the standardized callsign BAW123. Commands were 
categorized into three types: altitude (e.g., “descend to 3000”), 
speed (e.g., “reduce speed to 210”), and heading (e.g., “turn left 
heading 180”), covering the majority of tactical instructions in 
terminal operations. Numerical values were parsed using rule-
based methods and encoded as structured integer features. Each 
command was then represented by a combination of categorical 
and numerical attributes. To ensure clarity and consistency, 
compound or conditional commands were excluded. The 
resulting dataset retained clean, direct control instructions 
suitable for supervised modeling of maneuver timing. 

3) Feature Engineering 
To capture operational context, a set of auxiliary features 

was derived from open-source datasets. These included time-
aligned weather conditions (e.g., wind, humidity, visibility), 
airspace structure elements (e.g., STARs, SIDs), waypoint 
density, and traffic flow patterns based on historical data. 
Aircraft were classified by wake turbulence category (WTC), 
reflecting physical size and separation requirements. Each 
trajectory point was augmented with features such as distance 
and bearing to the airport, plan-route inclusion, nearest waypoint 
proximity, and local traffic density, providing essential spatial 
and situational cues for modeling ATCO decisions. 

To enable visual encoding in a multimodal framework, two 
types of images were generated. Sample images of generated 
historical trajectories are shown in Fig. 6. For each command 
timestamp, a 2-minute segment of prior flight path was plotted 
as a blue line on a standardized coordinate-free image. This 

allowed the model to consistently interpret heading changes, 
speed trends, and spatial context. Fig. 7 presents sample images 
of generated airspace snapshots at the time of command issuance. 
Each active aircraft is shown as a velocity vector, with the target 
aircraft highlighted in red and others in blue. This representation 
conveys local traffic complexity, directional conflicts, and 
spatial pressure that influence ATCO decision-making. 

Finally, each voice command was matched to the closest 
maneuver point in the trajectory using callsign and time 
proximity. This alignment captured the time offset between 
command and aircraft response, and the duration of the 
maneuver. The resulting dataset combined structured 
multimodal inputs with precisely labeled maneuver intervals for 
lifecycle prediction. 

B. LightGBM Baseline Model 

As a preliminary experiment, a LightGBM-based regression 
model was constructed to assess the predictability of the time 
offset between aircraft maneuvers and ATCO-issued commands. 
This interpretable model was designed to evaluate whether 
meaningful patterns exist in the data, thereby justifying further 
deep learning efforts. A set of structured features was used to fit 
the time offset and generate feature importance rankings. 
Results showed that the LightGBM model consistently 
outperformed a naive mean-based baseline, demonstrating that 
the time offset is not random but statistically predictable, thus 
validating the modeling objective (see Appendix). 

C. CNN-Transformer Model 

A multimodal neural network was developed to jointly 

model structured variables, historical trajectory sequences, and 
image-based airspace states, aiming to predict two key 

variables within the ATCO command lifecycle: time offset and 

duration. As illustrated in Fig. 8, the model consists of four 

feature encoding branches and a fusion regression head. 

1) Structured Feature Encoder (MLP) 

The structured feature encoder (MLP_N1) processes 

categorical and numerical inputs such as flight plans, aircraft 

models, command parameters, airspace traffic levels, and 

 

Fig. 6. Sample images of generated historical trajectories. 

 

Fig. 7. Sample images of generated airspace snapshots. 



 
Fig. 8. Architecture of CNN-Transformer model.

 
Fig. 9. Architecture of cstomized encoder layer. 

weather conditions. It consists of two fully connected layers, 

each followed by Layer Normalization, ReLU activation, and 

Dropout, yielding a 128-dimensional feature vector. 

2) Spatial Image Encoder (EfficientNet) 

The image feature encoder utilizes EfficientNet-B0 to 

extract spatial representations from two types of visual inputs: 
the aircraft’s historical trajectory image and the current airspace 

configuration snapshot. These images are constructed to reflect 

both localized motion patterns and broader traffic context. 

EfficientNet-B0, chosen for its balance between accuracy and 

computational efficiency, employs mobile inverted bottleneck 
convolution (MBConv) as its core building block. This 

architecture enables deep feature extraction while maintaining 

lightweight model complexity, making it well-suited for real-

time inference scenarios. The network structure is illustrated in 

Fig. 10. In this study, the classification head of EfficientNet-B0 

is removed, and the convolutional backbone is retained up to 

Stage 9, including all MBConv layers and pooling operations. 

Each image is independently processed to produce a 512-

dimensional feature vector, capturing spatial complexity 

relevant to ATCO decision-making. 

3) Trajectory Sequence Encoder (Transformer) 

The trajectory sequence encoder captures temporal patterns 

in the recent flight history, using input sequences of aircraft 
states such as speed, altitude, and heading from the past 60 

seconds. Each sequence is projected into a 128-dimensional 

hidden space and combined with learnable positional 

embeddings to retain time order. The encoded sequence is then 

processed by two custom Transformer encoder layers, shown in 

Figure 9. Each layer includes a multi-head self-attention 

module, residual connections, Layer Normalization, and a 

feedforward block with a Linear–ReLU–Dropout–Linear 

structure for non-linear transformation and regularization. 

Attention maps from the self-attention modules are retained for 

interpretability. These maps help visualize how the model 
focuses on different time steps, offering insight into which parts 

of the flight history influence the predicted command timing. 

The output is reduced to a 128-dimensional temporal feature 

vector using Adaptive Average Pooling and a Squeeze 

operation.



 
Fig. 10. Architecture of EfficientNet-B0 [11]. 

4) Fusion and Regression Head 

The four encoded feature vectors—128 for structured data, 

128 for temporal sequences, 512 for the trajectory image, and 

512 for the airspace image—are concatenated into a 1280-

dimensional multimodal representation. This is processed by a 

fusion MLP (MLP_N2), followed by a fully connected layer 

that outputs the two regression targets: time offset and duration. 

This setup captures the dynamic link between command 
issuance and aircraft response, enabling the inverse 

reconstruction of controller behavior from maneuver events and 

supporting deeper workload analysis. Cross-modal fusion was 

also tested using a cross-attention mechanism, where the MLP 

output acted as the query and the remaining modalities as key 

and value inputs. However, this method performed slightly 

worse than simple concatenation. An alternative multi-task 

learning design, using separate regression heads and loss 

functions for each target, was also explored but produced less 

stable results. The final model adopts a joint regression strategy, 

which better captures the correlation between time offset and 
duration and offers improved robustness and interpretability. 

III. EXPERIMENTS AND RESULTS 

A. Experiment Settings 

All experiments were conducted using PyTorch. The dataset 

was split into 80% for training and 20% for validation. 

Structured and sequential features were standardized, and 

image inputs were augmented using random brightness, 

contrast adjustment, and Gaussian noise. The model was trained 

for 200 epochs using the Adam optimizer with a learning rate 

of 1e-5 and a batch size of 16. A CosineAnnealingLR scheduler 
was used to adjust the learning rate dynamically SmoothL1Loss  

 

Figure. 11. Weighted model ensemble strategy. 

was applied to the time offset task for robustness to outliers, 

while MSELoss was used for duration due to its better 

sensitivity to small deviations. 

To enhance robustness and generalization, an ensemble 

strategy was adopted. Models were trained under different 

random seeds and loss configurations. For each regression 

target—time offset, duration, and overall error—the top two 
checkpoints based on validation performance were selected 

from each configuration, resulting in 12 representative models. 

Final predictions were obtained through weighted averaging. 

For time offset, higher weights were assigned to models 

optimized for offset (0.5), followed by overall (0.3) and 

duration (0.1); a mirrored scheme was used for duration. Fig. 

11 illustrates the ensemble strategy based on weighted 

averaging. This task-aware weighting improved performance 

across both targets while reducing sensitivity to data variation. 

B. Evaluation Metrics 

Model performance was evaluated using multiple 

regression metrics, covering both overall and variable-specific 

performance. The primary metrics include Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), and the 

coefficient of determination (R²). Definitions are as follows: 
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To evaluate performance at the variable level, all metrics 

were further decomposed into sub-metrics for time offset and 

duration individually, including MAE, RMSE, and R² for both 

output variables. 

C. Comparative Experiment 

To evaluate overall performance, the ensemble model was 

compared with three baselines: LightGBM, TabPFN [12], and 

the best single model by validation score. TabPFN, a 

transformer-based model for tabular data, is known for fast 



generalization without fine-tuning. As shown in Table I, the 

ensemble achieved the highest overall R² score (0.19), 

indicating better generalization and fit. While the best single 

model slightly outperformed in MAE, the ensemble yielded 

much higher R² scores for time offset (0.27) and duration (0.11), 
suggesting better trend capture and less overfitting. In contrast, 

TabPFN performed poorly across all metrics, with negative R² 

values. The ensemble was selected as the final predictor for its 

balance of accuracy, stability, and interpretability, suitable for 

both analysis and deployment. 

D. Ablation Study 

Ablation experiments were conducted to assess the impact 

of each input modality and CNN architecture. Table II reports 

the results. Removing any branch led to increased error, 

confirming the benefit of multimodal fusion. Airspace and 

trajectory images improved offset prediction, while the 

Transformer was more effective for duration. In terms of CNN 

architecture, EfficientNet-B0 outperformed both ResNet18 [13] 

and a custom shallow CNN, highlighting the importance of 

deep, efficient visual encoding in capturing spatial complexity.

TABLE I. MODEL PERFORMANCE COMPARISON 

Model MAE_ 

overall 

RMSE_ 

overall 

R²_ 

overall 

MAE_ 

offset 

MAE_ 

duration 

RMSE_ 

offset 

RMSE_ 

duration 

R²_ 

offset 

R²_ 

duration 

LightGBM 4.71 8.40 0.16 8.45 0.98 11.80 1.41 0.16 0.16 

TabPFN 6.46 11.08 -0.57 11.51 1.42 15.54 1.99 -0.46 -0.69 

Best Single (Ours) 4.63 7.70 0.16 8.24 1.02 10.76 1.64 0.26 0.05 

Ensemble (Ours) 4.89 7.73 0.19 8.67 1.10 10.81 1.61 0.27 0.11 

 

TABLE II. ABLATION STUDY RESULT 

CNN Type MLP Transformer 

Block 

Trajectory 

lmages 

Airspace 

lmages 

MAE_ 

overall 

MAE_

offset 

MAE_ 

duration 

efficientnet ✓ ✓ ✓ ✓ 4.86 8.48 1.24 

efficientnet ✓ ✓ ✓ ✗ 5.21 9.08 1.35 

efficientnet ✓ ✓ ✗ ✓ 5.22 9.24 1.20 

efficientnet ✓ ✗ ✓ ✓ 4.98 8.42 1.53 

efficientnet ✗ ✓ ✓ ✓ 4.98 8.61 1.35 

efficientnet ✓ ✓ ✗ ✗ 7.20 12.63 1.76 

resnet ✓ ✓ ✓ ✓ 5.56 9.76 1.37 

resnet ✓ ✓ ✓ ✗ 5.57 9.89 1.24 

resnet ✓ ✓ ✗ ✓ 5.36 9.47 1.25 

resnet ✓ ✗ ✓ ✓ 5.58 9.94 1.22 

resnet ✗ ✓ ✓ ✓ 5.47 9.74 1.20 

resnet ✓ ✓ ✗ ✗ 7.36 12.98 1.74 

custom ✓ ✓ ✓ ✓ 5.84 10.50 1.18 

custom ✓ ✓ ✓ ✗ 6.21 11.12 1.30 

custom ✓ ✓ ✗ ✓ 5.96 10.71 1.21 

custom ✓ ✗ ✓ ✓ 5.95 10.56 1.33 

custom ✗ ✓ ✓ ✓ 5.93 10.49 1.38 

custom ✓ ✓ ✗ ✗ 7.23 12.36 2.09 



E. Interpretability Analysis 

To better understand how each input modality contributes 

to the model’s predictions, a series of interpretability analyses 

were conducted using SHAP and attention-based visualization 

techniques. 

For structured inputs, SHAP analysis revealed that features 

related to command type and aircraft motion had the highest 

influence on model predictions. In the case of time offset, the 

most important feature was whether the command was speed-

related (velocity), with an average SHAP value of +0.09. Other 

key contributors included heading commands (head), current 
airspeed (cas), and the aircraft’s bearing to the airport 

(bearing_to_airport), reflecting the model’s sensitivity to 

aircraft dynamics and spatial positioning. In contrast, 

contextual variables such as weather conditions and peak-hour 

indicators had negligible contributions, suggesting they offered 

little discriminative value. These findings are consistent with 

the LightGBM baseline analysis. For duration, velocity 

remained the most relevant variable, though its importance 

decreased significantly (average SHAP +0.03), indicating that 

speech duration is less strongly tied to structured inputs and 

may depend more on latent factors such as phrase structure or 
controller habits. Other modestly contributing features included 

distance to the airport and flight level, hinting at a tendency for 

controllers to use longer phrases when communicating with 

distant or high-altitude aircraft. Most other features showed low 

overall impact, though some—such as traffic density or planned 

routing—had occasional localized effects under specific 

conditions. Beeswarm plots further highlighted the directional 

impact of each feature. For instance, velocity exhibited a clear 

binary pattern in time offset prediction, with speed commands 

increasing predicted delay, while for duration, it had an 

opposite effect. These results confirm that the model’s attention 

to structured features aligns with operational intuition and 

provide a basis for future pruning of low-impact variables to 

improve model efficiency. 

For temporal inputs, attention maps from the Transformer 

encoder revealed how the model distributes focus across time 

steps. In earlier layers, attention was dispersed, while deeper 
layers selectively emphasized key moments in the trajectory, 

such as turning points or speed changes. This progression 

confirms the Transformer’s capacity to model temporal 

dependencies and identify behaviorally significant events. 

For image inputs, Grad-CAM was applied to visualize 

activation regions in both current airspace snapshots and 

historical trajectory images. The model consistently attended to 

areas with high traffic density or recent maneuvers, indicating 

that the CNN modules effectively capture spatial cues that 

enhance the model’s understanding of airspace complexity. 

Overall, these interpretability results underscore the 

complementary contributions of all three modalities and 
demonstrate that the model’s predictions are based on 

semantically meaningful patterns. They also provide further 

evidence supporting the effectiveness of multimodal fusion. 

Full SHAP plots, attention heatmaps, and Grad-CAM 

visualizations are provided in the Appendix. 

F. Case Study 

 To further illustrate the model's prediction capability, two 
representative case studies on ATCO command lifecycle 
prediction are presented, covering both single-command and 
high-density multi-command scenarios. 

1) Single Command Prediction 
 An example involving flight QFA1 is first analyzed. Fig. 12 
shows speed variation over time for this representative flight. At 
approximately 50,789 seconds, an ATCO issued a speed 
reduction command from 250 knots to 220 knots. Around 
50,811 seconds, the aircraft executed a corresponding 
deceleration maneuver, which the model successfully identified. 

 

Fig. 12. Command and atcual maneuver timestamps for a flight during a speed change event. The red marker indicates the ATCO command time, and the green 

marker indicates the observed maneuver time. 



 

Fig. 13. Predicted command lifecycle. Blue denotes the actual voice segment, yellow the predicted voice duration, and green the maneuver onset. 

 

Fig. 14. Predicted command lifecycle in a high-load airspace window.

A timeline-based visualization of this lifecycle is 
presented in Fig. 13, showing the actual voice segment (blue), 
predicted voice duration (yellow), and observed maneuver 
(green). The model’s predictions closely align with the true 
sequence, with a duration prediction error of only 0.1 seconds 
in this instance. This result demonstrates the model’s ability 
to capture the temporal structure of ATCO behavior with high 
fidelity. 

2) Multi-Command Prediction 
 To evaluate model generalization in dense command 
scenarios, a high-load terminal area window spanning 100 
seconds was selected. Fig. 14 presents the model’s predicted 
command lifecycles for several flights during this interval, 
including TGW979 (heading 140), SIA827 (heading 230), 
SIA256 (velocity 250), and SIA631 (flight level 11,000; 
heading 250). Despite the close temporal proximity of 
commands, the model was able to reconstruct each lifecycle 
with accurate alignment between predicted voice timing and 
maneuver onset. These examples confirm the model’s 
robustness in handling high-density, multi-target scenarios 
and its potential for supporting real-time workload analysis. 

IV. LIMITATIONS 

 Despite the effectiveness of the proposed CNN-
Transformer ensemble model in predicting ATCO command 
lifecycles, several limitations remain: 

1) CDO Handling: The model cannot accurately predict 

command timing during Continuous Descent Operations 

(CDO), where flights often lack distinct level-off segments. 

As a result, it is difficult to identify clear maneuver points. To 

maintain modeling accuracy, CDO phases were excluded 

from this study. Future work should incorporate fine-grained 

vertical trend analysis and descent rate modeling to improve 

support for CDO trajectories. 

2) Conditional Commands: Some controller instructions 

include execution conditions (e.g., “descend after passing 

waypoint X”), which introduce delayed maneuvers. These 

commands disrupt the direct mapping between voice and 

trajectory, leading to large time offset variance or label noise. 

Although such cases were excluded from the current dataset, 

future models should integrate speech content analysis and 

trajectory event alignment to support conditional execution 

logic. 

3) Single-Command Assumption: The model assumes 

that each voice segment corresponds to a single command. 

However, ATCOs frequently issue multiple instructions in a 

single transmission. Using one-hot encoding for command 

type limits the model's expressiveness. Future directions 

include multi-label command encoding and semantic 

segmentation of composite voice inputs. 



4) Misalignment Caused by Overlapping Commands: In 

some cases, a new command is issued before the aircraft 

completes the previous maneuver. This may cause the aircraft 

to bypass intermediate phases, such as level flight, resulting 

in missing or misaligned lifecycle targets. Future work could 

introduce command queue modeling and transition-state 

reasoning to resolve such discontinuities. 

V. CONCLUSION 

This study addresses the problem of modeling the lifecycle 
of air traffic control (ATCO) commands by proposing a 
multimodal deep learning framework that estimates controller 
workload in terminal maneuvering areas based on aircraft 4D 
trajectories. To ensure accurate labeling, trajectory data were 
preprocessed using filtering techniques, and maneuver points 
were identified via a sliding window combined with 
histogram-based detection. An initial LightGBM model was 
used to confirm the predictability of the task and to identify 
influential features. Building on this, a hybrid CNN-
Transformer model was developed to predict two key 
temporal variables: the time offset between command 
issuance and maneuver execution, and the duration of spoken 
commands. The model integrates heterogeneous inputs, 
including structured flight and environmental data, historical 
trajectory sequences, and spatial airspace representations 
rendered as images. Attention map visualizations were 
incorporated to enhance interpretability and transparency. 
Comparative and ablation experiments demonstrated the 
independent and complementary value of each modality. 
Image and trajectory inputs were shown to play distinct yet 
synergistic roles in reconstructing the timing of ATCO 
decisions. The final model can infer command lifecycles from 
flight behavior alone, enabling timeline reconstruction of 
ATCO activity without relying on raw audio data. 

This work provides a technical foundation for automated 
command generation and workload quantification in complex 
airspace environments. It offers potential applications in 
ATCO resource planning, airspace management, and flight 
scheduling optimization. Future extensions may be integrated 
into airport collaborative decision-making systems to support 
real-time controller assistance and operational efficiency 
improvements. 
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APPENDIX 

 

Fig. A.1. LightGBM Performance Comparison. The yellow bar indicates 

the mean-based baseline; the blue bar represents LightGBM. 



 

Fig. A.2. SHAP feature importance bar chart — Time Offset. 

 

Fig. A.3. SHAP feature importance bar chart — Duration. 

 

Fig. A.4. SHAP beeswarm plot — Time Offset. 

  

Fig. A.5. SHAP beeswarm plot — Duration. 

 

Fig. A.6. Attention heatmaps of the first and second layers in the 

customized Transformer module. 

 

Fig. A.7. Grad-CAM heatmap of the airspace snapshots. 

 

Fig. A.8. Grad-CAM heatmap of the historical trajectory images. 


